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We treat the onset of convective motions for the case in which the base-state density 
profile is evolving in time. The formulation is in terms of random forcing which we take 
to be thermodynamic in origin, following our earlier work (see Jhaveri & Homsy 1980). 
Experimental evidence is reviewed which clearly demonstrates the need for such a 
stochastic formulation. The randomly forced initial-value problem is solved numeric- 
ally at high Rayleigh numbers in the mean-field approximation for both a step change 
and linear temporal increase in surface temperature. The numerical results give both 
an expected value for the onset time for which convection is measurable and the 
variance of that expected value. The results are in good agreement with available 
experiments . 

1. Introduction 
In this work we address the problem of the determination of the onset time of 

convection in initially quiescent fluid layers whose base temperature profile is de- 
veloping with time. There has been little analytical progress on this class of problems 
since it was critically reviewed by Homsy (1  973). The earliest approach to the analytical 
determination of onset times consisted of ‘freezing’ the diffusing base state at a given 
time and determining its marginal stability; the time thus appears only parametrically 
(Lick 1965; Currie 1967). This approach proceeds from the assumption that disturb- 
ances are growing faster than the base state is evolving. An alternative initial value 
approach has been taken by Foster (1965, 1968) and afterwards by Mahler, Schechter 
& Wissler (1968), Mahler & Schechter (1970) and Gresho & Sani (1971), amongst 
others. The linear disturbance equations are Fourier decomposed and the spatial 
dependence is removed by taking appropriate inner products. Evolution equations of 
the form 

are derived for the time-dependent Fourier amplitudes, x$(t), with the wavenumber and 
Rayleigh number appearing as parameters in equation (1.1). The strength of convective 
motion is defined in terms of a suitable norm Ilzi(t)ll for the growing disturbance 
amplitudes. The amplitude equations are then integrated numerically subject to some 
initial conditions and the growth of disturbances is followed as a function of time. 
Parametric dependence of the evolution (1 .1)  on the wavenumber is removed by 
choosing the particular wavenumber for which the evolution is fastest. Convection 
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patterns having this wavenumber are supposed to occur when the initial convective 
strength of the disturbances, Ilxi(0)ll, has amplified by a suitable factor, A. That is, 
a t  the onset of convection the equality 

I l%C~O) l l  = 4l%;i(O)l l  (1.2) 

holds. The amplification factor is usually found by matching the predicted evolution 
with experiments. Drawbacks with this approach are discussed below. Finally, a 
somewhat different approach to this problem has been taken by Homsy (1973). 
Using the method of energy, a lower bound to onset times may be determined. Any 
convective motion is shown to decay exponentially for times below this lower bound. 
These bounds are, in general, quite conservative (see, for example, Gumerman & 
Homsy 1975; Wankat & Homsy 1977). 

These theories are unable to explain many of the observations concerning the 
measurement of the onset time. Many investigations concerned with the experimental 
determination of the onset time and the form of motion at onset have been reported 
in the literature; for reviews see Davenport (1972), and Spangenberg & Rowland 
(1961). We wish to discuss in detail the experiments of Blair & Quinn (1969), because 
of their accurate flow visualization and measurements of onset times. Onset experi- 
ments were carried out in a cylindrical apparatus of large aspect ratio in order to 
approximate the condition of infinite horizontal extent. Gas adsorption of sulphur 
dioxide into water was used to create the buoyancy force. Since the solution of sulphur 
dioxide is denser than water, transient experiments were carried out by subjecting an 
initially quiescent fluid layer of uniform composition to a step change in the concen- 
tration of sulphur dioxide at the upper boundary. The resulting concentration profiles 
were visualized using schlieren photography. As the gas was diffusing by a molecular 
mechanism, a layer of concentrated sulphur dioxide developed below the upper 
boundary. Initially the bottom surface of this diffusion layer was smooth and steady 
as it grew. Then the concentrated solution collected along circular rings at  the edge 
of the diffusion layer. Rings then detached from the upper surface and fell into the 
lighter liquid below. Onset times were measured both visually and by monitoring the 
rate of uptake of gas at the upper boundary. Since convection augments transport 
into the liquid, the onset of convection is accompanied by a corresponding increase 
in the rate of adsorption over that due to diffusion alone. Measured onset times thus 
depended upon the smallest increment in Sherwood number (dimensionless surface 
flux) above the diffusive value the measuring instrument could detect. 

The following general observations were made. Rings originated at random locations 
below the surface of the developing diffusion layer. The appearance and detachment 
of these rings continued a t  irregular intervals. For example in one experiment in 
which an onset time of 27 s was measured, the times of the origination and detachment 
of rings varied from 24 to 30s. Also the strength of convective motion in different 
rings was different at a given time. When the same experimental run was carried.out 
in two different apparatuses, no substantial difference in the measurements of onset 
time was found. Thus i t  was concluded that initial perturbations had no effect on the 
onset time. The wayenumber at the onset was measured by counting the number of 
rings per unit area. The wavenumber was found to increase with the Rayleigh number. 
For highly supercritical Rayleigh numbers the onset of convection was observed long 
before the bottom of the fluid experienced any significant increase in the sulphur 
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dioxide concentration. The onset time and the wavenumber at onset then should be 
independent of the depth of the layer. Dimensional considerations give these asymp- 
totic limits as: 

Rtt = I$ = constant, Rcq3 = at = constant, (1.3) 

Here R is the Rayleigh number based on the total depth, and to and a, are respectively 
the dimensionless time and the wavenumber at  onset. These two asymptotic relations 
were also verified experimenthlly. 

Davenport & King (1974) carried out transient experiments in which the motion 
was driven by temperature gradients. Their apparatus was isolated from mechanical 
vibrations through use of a vibration-free table. Some of their experiments were done 
with a surface temperature which increased linearly with time. Their experimental 
results showed that the condition of the onset of observable convection at a gas-liquid 
interface and a solid-liquid interface were the same if surface waves, meniscus and 
surface tension gradient effects were eliminated from the experiment. For this manner 
of linear heating, dimensional considerations give the asymptotic limits as : 

Rt,8 = R,, Rao6 = at. 

The asymptotic onset times, given by Rt(Pr), were measured for a wide range of 
Prandtl numbers. 

Consider the evolution equation (1.1). The initial value approach assumes that all 
evolutions (rings in experiments of Blair & Quinn) have identical initial conditions. 
Thus it predicts that  all rings will evolve identically and become observable at the 
same time, a prediction which is contrary to the experimental observations. Blair & 
Quinn (1969), and Davenport & King (1973) attempted to compare their observations 
with predictions of the initial value approach and no unique value of the amplification 
factor was found. In  fact values of A ranging between lo3 and los were necessary to 
fit the experiment with the amplification theory. However, the wavenumber at the 
onset of convection was found to be ‘the fastest growing ’, as predicted by the initial- 
value approach. This is intuitive if one assumes that fluctuations of all wavenumbers 
are present in the fluid; the fastest growing one will be detected first. Thus, subjective 
decisions regarding the choice of initial conditions, definition of strength of convection 
in terms of a norm, and the choice of amplification factor, have to be made by the 
analyst. Another drawback lies in the assumption that the disturbances are present 
only at an initial instant. Disturbances are in general present throughout the evolution 
and this may substantially affect the evolution. Finally, much of the previous work 
neglects the nonlinear effects. When the convective motion becomes observable, 
disturbances may no longer be considered infinitesimal and nonlinear effects may not 
be neglected. Indeed, the use of measurements of mean transport in order to define 
onset of convection implies finite-amplitude motions. 

In  light of these observations, it  seems appropriate to develop a model in which 
disturbances are treated statistically. Many of the features of the formulation of a 
statistically based theory have been given by us in a previous paper (Jhaveri & Homsy 
1980; hereinafter referred to as I). In the present paper, we extend this to highly 
supercritical conditions in order to compare the predictions of the stochastic theory 
with experiment. 
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2. Stochastic formulation 
It is obvious from previous considerations that more satisfactory modelling is 

required to explain the experimental observations. We arrive at the stochastic formu- 
lation by reconsidering these observations. Since the measured onset times correspond 
to the average convective transport by all evolutions and since the onset times were not 
significantly different in two independent experimental runs in different apparatuses, 
an immediate conclusion is that all evolutions in an experiment were statistically 
correlated so as to have reproducible average transport. Hence they must have evolved 
from a statistical distribution of initial values. It is unlikely to have an almost identical 
distribution of initial values unless caused by some random forcing common to the 
experiments. Such random forcing could be caused, for example, by building vibrations. 
It is then natural to introduce random forcing in the governing disturbance equations. 
As in I, in order to provide an upper bound to the onset times in any physical system, 
and a sufficient condition for instability, we introduce this forcing as thermodynamic 
fluctuations, which are always present in any macroscopic system. Our results will 
then hold for all experiments devoid of perturbations of mechanical nature. The 
advantages of introducing random forcing are twofold. First, in solving for the state 
of rest, random forcing immediately specifies the statistics of initial values. Second, 
it takes into account the continuous presence of noise during evolution. 

As a further step to improve modelling, we consider the possibility of nonlinear 
interactions to the lowest order modification of the horizontal mean temperature and 
hence the Nusselt number. Since the disturbances just become observable at the onset 
of convection, it is appropriate to neglect higher-order interactions at  this time. We 
discuss these approximations in detail below. These considerations turn the deter- 
ministic evolution equation (1.1) into a random one, viz. 

wheref,(t) is a random variable, Qijk is a nonlinear coupling tensor, and 8 is the strength 
of the forcing. As discussed in I, since the statistics of the forcing are available from 
statistical thermodynamics and the statistics of initial value x,(O), are easily calculated 
in terms of the statistics of forcing, the formulation of a statistical initial-value problem 
is complete for the random evolution +). 

Now we are ready to outline broadly the solution process used to evaluate onset 
times from the random evolution xi(t). It is important to first give a consistent definition 
of onset time. The horizontal extent of fluid in an experiment is considered large 
enough to generate a large number of evolutions approximating the ensemble for the 
random evolution z,(t). With this assumption, if an experiment is repeated in another 
apparatus with identical forcing, the statistical mean value properties of the realized 
evolutions are reproducible. Let M, correspond to the smallest value of mean Nusselt 
number { N u )  above unity the measuring instrument can detect. We define the onset 
of convection when the mean Nusselt number ( N u )  first reaches the value Ms. From 
the solution process for (2.1), we first arrive at  the curve for (Nu( t ) ) .  Then the onset 
of convection is defined through 

(“to)) = MS. (2.2) 
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The onset time to is thus readily calculated from the theoretical evolution of (Nu(t)) .  
The wave number at the onset of convection is &ill considered to be the fastest growing 
one. 

This completes the stochastic formulation and the outline of the solution process in 
general terms. As mentioned earlier we have analysed a weakly supercritical con- 
vection problem in I with this formulation. We extend the analysis of I to highly 
supercritical conditions under which the experiments were performed. 

We present below a fairly simple theoretical model of onset experiments. The 
physical system consists of a fluid layer confined between two infinitely extended 
horizontal planes. The fluid is considered to be locally incompressible in the Boussinesq 
approximation. The bounding surfaces are considered isothermal, impermeable and 
stress-free. The fluid layer is initially isothermal and quiescent. At  the instant t = 0, 
the bottom surface is heated in a time-dependent manner. We consider two distinct 
cases of heating; case A in which the fluid is subjected to a sudden increase in the 
bottom temperature, and case Bin which the bottom temperature is increased linearly 
in time. We start with the dimensionless governing equations for the disturbances 
with inclusion of thermodynamic fluctuations as random forces which take the same 
form as equation (2.1) in I except for the term proportional to the Rayleigh number, 
since the base temperature profile is now time dependent. These equations are: 

- 

aT aT a2T 
-+u - = R(r(z,t))uiSi3+- = 0, 
at 'ax5 axj axj 

Here R is the Rayleigh number, S, is the fluctuating stress tensor, and r(z, t )  is the 
gradient of the diffusing base temperature profile. For case A of sudden heating, 

r(z ,  t )  = 1 + 2 2 cos (nnz) exp [ -n2n2t]. 
n=l 

For case B of linear heating, 
m 

n= 1 
~ ( z ,  t )  = t + (2/n2) cos (nnz) (1 - exp [ - n2n2t])/n2. (2.5) 

The boundary conditions are u, = T = 0, z = 0 , l .  
In  equation (2.3), random terms are included only in the momentum equation for 

reasons discussed in I. The temperature difference A T  in the definition of the Rayleigh 
number R is taken as actual temperature difference across the layer in case A and 
( y Z 2 / ~ )  in case B. Here y is the rate of increase in bottom temperature, 2 is the length 
of the layer and K is the coefficient of thermal diffusion. 

Certain assumptions have to be made and justified before we proceed with the 
solution process. It is generally observed that in the transient experiments of this kind, 
the first convective motion appears to have a two-dimensional form. Rings in the 
transient experiments of Blair & Quinn were axisymmetric at  the onset of convection. 
In  the transient experiments of Spangenberg L Rowlend (1901) in a rectangular 
geometry, the first motion occurred in the form of two-dimensional plunging sheets. 
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It is justifiable to restrict the analysis to two dimensions, at least until the first motion 
appears, and we do so here. The second assumption concerns the Fourier decomposition 
of the disturbance equations. Since the base temperature profile is developing by 
thermal diffusion in the vertical direction, we pay careful attention to the vertical 
structure of convection and include as many normal modes into the decomposition as 
required for convergence. However we simplify the horizontal dependence and retain 
only one mode in the horizontal structure. Such a truncation is justified since in the 
experiments of Blair & Quinn (1969) and Spangenberg & Rowland (1961), large-scale 
features of convective motion at the onset were dominated by one horizontal mode. 
Thus it is appropriate to represent the horizontal structure by a single mode, at least 
for a short finite time after the onset of motion. The amplitude equations obtained 
after such decomposition are also called the single-a mean-field equations. The mean- 
field equations contain an O( 1) constant distinguishing different horizontal planforms 
like rolls, rings, hexagons, etc. Use of the mean field approximation allows comparison 
between the analysis with two-dimensional rolls and experiments with rings. Mean 
field equations of this type have been successfully used in the past to predict transport 
and explain some of the large-scale features of natural convection (see Gough, Spiegel 
& Toomre 1975). With such a truncation the only effect of nonlinear interactions is in 
the modification of the horizontal mean temperature. This is equivalent to restricting 
the first index a, in the modal expansions (2.4, 2.5) of I to values of 0 and 1. Finally, 
the dimensionless number 0 giving the variance of the random stress is assumed to be 
constant in time although the average temperature of the fluid layer is time dependent. 
This is justified since 0 is of thermodynamic order and the variation in the absolute 
temperature of the layer will not drastically change its order. 

3. Solution 

variables in the horizontal direction can be written as 

w = C ( Z ,  t )  cos (m), T = dO(z, t )  + d(2, t )  cos (ax), 

With the assumptions made above, the Fourier decomposition of dependent 

(3.1) 

with associated expansions for u andp. Substituting these expansions in the dimension- 
less governing equations and forming the appropriate inner products to remove the 
horizontal space dependence, we obtain in the usual way, the following partial 
differential equations for the Fourier amplitudes c(z,  t ) ,  d(z, t )  and do@, t ) :  

; y+) c ( 2 , t )  = Pr ( D ' a a 2 ) 2 c ( 2 , t ) - P r d ( 2 , t )  - +f(Z, t ) ,  

a 
at 
- d(2, t )  = R ~ ( z ,  t )  C ( Z ,  t )  + ( 0 2  - 012) d(2, t )  - cD(do(~,  t ) ) ,  

a 
-do(& t )  = 02do(2, t )  - iD(c(2, t )  d(2,  t ) ) ;  
at 

where D = 8/82, and 

) er ) f(z,t) = "s (a +- "1 ( - - s i n ( m )  a 
=n/= aw,, 1 

- -+- cos(m) ax. (3.3) 
n o  
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If we expand the amplitudes into normal modes in z and proceed as in I, nonlinear 
terms will become convolution sums; refer to equations (2.6)-(2.8) of I. It turns out 
that it is economical and convenient to use spectral methods to evaluate these non- 
linear terms (Orszag 1971). Let the product terms in equation (3.2) be represented 
symbolically as 

(3.4) I g(z, t )  = r(z ,  t )  c(z ,  t ) ,  

+, t)  = c ( z , t )  W Z ,  t ) ,  
h(z, t)  = P [ C ( Z ,  t )  4 2 ,  t ) l .  

Then equations (3.2) may be formally Fourier-transformed in the z direction to yield 

(3.5) 

( 3 . 6 ~ )  

Here the subscript k refers to the kth Fourier component. The system (3.5) is subject 
to the initial conditions 

Ck(0) is related to the statistics off, as shown in I, and thus Ck(0) is a Gaussian variable 
with zero mean and correlation, 

d a dk = .&k(t) - (a2 + k%') dk(t) + 8 k ( t ) ,  

d a (dok) = -n2k2dok(t) +hk(t) .  

dk(0) = dok(0) = 0; 

The forcingfk(t) is also Gaussian with zero mean and correlation: 

(3.6b) 

In these equations, n is the number of discrete points in the bite Fourier transform 
pair; see discussion below on the method of solution, and Jhaveri (1979). 

We have solved the problem numerically by Monte Carlo methods &s described 
in I ;  however here we have the problems of (i) evaluation of the nonlinear terms s(z, t )  
and h(z, t ) ,  cf. equation (3.4); and (ii) carrying many modes in the z direction to resolve 
the spatial structure of the evolving base state, r(z ,  t )  properly, cf. equation (3.4). 

We have used spectral methods to solve the partial differential equations given by 
(3.2). The implementation of the spectral method, in which the nonlinear terms in 
equation (3.4) are evaluated in real space on a discrete grid, and the time-stepping is 
done in Fourier-space by integrating equation (3.5) is discussed in detail in Jhaveri 
(1979). The main steps for the numerical simulation are as follows: 

Step 1. Deterministically integrate the system of equations (3.5) from deterministic 
initial conditions to determine both the number of vertical modes required 
for convergence and the fastest growing wavenumber ao. 

Step 2. Generate N samples for each ck, lkl < n distributed with zero mean and 
variance given by (3.6b). The N samples for each dk and dok are initially zero. 
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- 
I 

Time, t 

FIGURE 1.  Schematic diagram of typical numerical results showing convective transport for 
individual realizations, and the mean (dashed line), as a function of increasing R. 

Step 3. Evaluate the spectrum of nonlinear product terms, g k ,  8, and hk, by the 

Step 4. Deterministically integrate (3.5) for a step size h. 
Step 5. Generate N samples for random increment bk(t1, t z )  for each ck) distributed 

spectral method; Orszag (1971) and Jhaveri (1979). 

with zero mean and variance related through forcing as, 

Step 6. Evaluate the Nusselt number for such samples and then calculate the mean 

Step 7. If (Nu( t ) )  > M,, stop. Otherwise repeat from step 3.  

As mentioned earlier, since higher-order nonlinear interactions become significant 
at long times, the assumptions involved in deriving the mean-field equations become 
invalid. Thus, we carry out the simulation only until significant convective motion 
corn mences . 

Nusselt number ( N u ( t ) )  from this approximate ensemble. 

4. Results and conclusions 
The calculations were carried out for Pr = 7 and 0 = 3-43 x 10-7 for both cases of 

heating. The value of 0 is appropriate for most liquids at  room temperature; see I. 
The results of these calculations were of course similar to those reported in I. 

Figure 1 in which we plot the convective transport us. time, gives a schematic diagram 
of the results. For any given R, the realizations are distributed about some mean, see, 
for example, figure 2 of I. We find that for increasing R, measurable convection begins 
sooner, as is to be expected, and the variance of realizations about the mean is reduced. 

For case A of sudden heating, the Rayleigh number was increased until the asymp- 
totic limits were obtained, as given by equations (1 .3) .  Onset times corresponding to 
three different sensitivities of the measuring instrument were evaluated. The results 
are presented in table 1. We see that in the limit of large Rayleigh numbers ( R  > 30R*),  
the asymptotic relation for onset time given by equation (1.3) holds approximately. 
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Rayleigh number 
R* = (27/4)n4 

10 R* 
30 R* 
100 R* 
300 R* 
1000 R* 

1.5 R* 

Rt = Rd,, 

Ma = 1.01 M a  = 1.05 
1816 - 
346 382 
319 350 
318 348 
314 343 
32 1 349 

, 
M ,  = 1.1 RaiB 

68 
398 146 
364 225 
362 246 
357 264 
363 264 

- 

TABLE 1. Variation of onset time and the wavenumber at onset 
with the Rayleigh number. 

That the asymptotic results are only approximately constant is attributed to  the 
sampling error involved in the Monte Carlo simulation. It should also be noted that 
with the decrease in sensitivity (higher value of Ma), the corresponding increase in 
onset time is not linear. This is in agreement with one’s intuition that different 
measuring instruments should not yield widely different onset times. 

Our Monte Carlo calculations also allow us to predict the variance of onset times. If 
each evolution is defined to become observable when its Nusselt number exceeds the 
value of 1-01, and if At denotes the time interval during which all evolutions become 
observable, then in the asymptotic limit, we find 

R(At)Q -N 36. (4.1) 

In the experiments of Blair & Quinn, the asymptotic value measured was 

Rtt II 300 

which compares favourably with Rt 21 350 from table 1. 
In a typical experiment described by Blair & Quinn, when the onset time of 27s 

was measured, the time interval of ring origination was from 24 to  30 s. For their data 
this spread corresponds to 

R(At)Q = 31, 

again in good agreement with our numerical results, for example, equation (4.1). The 
experiments were carried out for large Schmidt (Prandtl) numbers, so the corres- 
ponding onset times for Pr = 7 should be somewhat higher. With this consideration, 
our asymptotic results for onset time and the time interval of ring origination are in 
excellent agreement with the experimental measurements. 

For case B of linear heating, the asymptotic results were calculated using R = lo* 
for which the fastest growing wave number corresponds to a. = 11, (Foster 1965). 
The asymptotic results in the form of equation (1.4) are presented in table 2 for three 
different sensitivities. Our analysis corresponds to Davenport & King’s ( 1974) 
experiments where a linear surface temperature decay was generated using a thermo- 
electric cooler. For Pr = 7, the measured experimental Rt found by extrapolation 
from their figure 3, is 

Rt = 973. 

Again, excellent agreement is found between the analysis and the experiments. 
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R, = Rteo 
A 

I -? 

R M ,  = 1.01 M ,  = 1.05 M ,  = 1.1 
108 911 995 1035 

TABLE 2. Asymptotic results for cam B of linear heating. 

We have calculated onset times of convection using a stochastic theory which are 
in good agreement with available experiments. It is necessary to estimate the strength 
of the random forcing (the parameter 0 above). In  the case of the experiments of 
Blair & Quinn, the appropriate value would be that given by a statistical theory of 
concentration fluctuations, since theirs was a mass transport experiment. The order of 
magnitude of 0 however would be the same. In the case of the experiments of Davenport 
& King, the present estimate of 0 is appropriate. We feel it is remarkable that our 
theory, in which the strength of the forcing is estimated from statistical thermo- 
dynamics, is in such good agreement with experiment. While this does not prove that 
these instabilities were due directly to thermodynamic fluctuations, it  does indicate 
that the forcing present in these experiments was of the same order of magnitude. 

We wish to acknowledge the support of this work by the U.S. Department of Energy, 
Office of Basic Energy Sciences. 
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